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Nonsta t ionary  heat t r a n s f e r  is cons idered  for a pipeline ca r ry ing  a liquid through cold ground. 

Pipeline t r a n s p o r t  of water  or  aqueous mix tu res  or  suspens ions  through cold soi ls  is f requent ly  a c c o m -  
panied by  the format ion  of ice within the pipeline [1-3]. The danger of this is higher in the s t a r tup  per iod,  when 
the heat  flux to the ground is maximal .  Methods a re  avai lable  for calculat ing the heat  t r a n s f e r  f r o m  such a 
liquid to a fiat wall [4, 5], to a cold tube [3, 6, 7], and to a l o w - t e m p e r a t u r e  soil  [8], but all  these  involve the 
assumpt ion  that the t e m p e r a t u r e  of the wall bounding the flow is constant.  This co r r e sponds  to a s t e ady - s t a t e  
heat condition in the soil  and cannot be used for the s t a r tup  s ta te ,  where  the heat flux to the wall  a l t e r s  v e r y  
considerably .  

Correc t ion  for the t e m p e r a t u r e  r i s e  in the soil  involves cons ider ing  the heat conditions in t h r ee  zones:  
in the liquid, in the ice l aye r ,  and in the surrounding soil. 

The p rob lem may be cons idered  as follows. A pipeline of d iamete r  2a is bur ied  in the ground at a depth 
H f rom the sur face ;  the t e m p e r a t u r e  distr ibution in the soi l  at the s t a r t  co r re sponds  to the na tura l  t e m p e r a t u r e  
dis tr ibut ion in the ear th.  The pipeline is at the negat ive natural  soil t e m p e r a t u r e  at s tar tup .  The pipeline be -  
gins to be filled at a constant  flow r a t e  Q with liquid at a constant  t e m p e r a t u r e  T0 at the inlet .  Then the  equation 
for the heat flow to the liquid is 

( or, pc .~a 2 0TI -l-Q = - - q  + N; O ~ z < b ;  (1) 
O~ Oz } 

pc n82 07"/ + Q  =2n~r - -TI)-- t -N;  z>/b;  (2) 
OT Oz ] 

Tz!,=o = To. (3) 

At z _>b the solid phase  (ice) appea r s  in the region 6 < r - < a ,  and for this the conduction equation is 

i 0r ] 
OT \ Or 2 -4- --r Or . ; ~ ~ r ~ a; 

Ti[r.=6= Tp; 

05 OTi ; 
/Pi -~'~-~ = a ( T l - -  Tp ) § )~i Or r=8 

ril,=a = Tt,=a �9 

(4) 

(5) 

(6) 

(7) 

(8) 

The conduction equation for the soil  for z < b is 

OT _ z I 02T + O~T ~ ; x2 § ( y - -  I-I)~ >! a~; y ~ 0; 
O~ \ Ox ~ / 

Tl,=a = T l,; 

Tiy=o = T s ; 
0 

Tl~=o = T~ . 

(9) 

(10) 
(11) 
(12) 
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Fig. 1. Dimens ion less  t he rma l - in f luence  
r ad ius  as a function of d imens ion less  t ime.  
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Fig. 3. T ime  cou r s e  of the min imal  rad ius  
5 min of the inner su r f ace  of the ice l aye r ,  pos i -  
tion of  the front  edge of the ice b, and p r e s s u r e  
drop AP along the pipeline for T n =-6~  5 rain, 
m;  b, kin; AP~ tech. a tm;  v ,  h. 
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Fig. 2. Compar i son  of the approx imate  analy t i -  
cal  solution of (18) and (18b) with numer i ca l  
solution: 1) numer i ca l  solution; 2) approx imate  
solution of (18); 3) approx imate  solution of (18b); 
a) H = I  m; b) H=2.5  m. 
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T ime  cou r se  of 5 rain, b, and AP for 
T n =-2 .6~ 
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Fig. 5. Shapes of the ice l ayer  at va r ious  instants :  D 
~- =41.1 h; ID 83.1; HI) 163.3; 5,  m; z,  kin. 

The boundary  condition of (10) has  to be r ep l aced  by (8) in the zone z > b; if it is n e c e s s a r y  to allow for 
the t h e r m a l  r e s i s t a n c e  at the wall  of the tube and the su r f ace  of the ground, one can inser t  a ficti t ious additional 
l aye r ,  in which case  the boundary conditions of the th i rd  kind a r e  reduced  to those of the f i r s t  kind [9, 10]. 

We a s s u m e  that  the flow of the l iquidis turbulent~  3 �9 103_<Re _<3- l0 s, and then the express ion  for the hy-  
draul ic  inclination is [11] 

Q2 
i =  

(1.81g R e - -  1.5) ~'4n2gR~ " (13) 
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Her  e 

R~=~a for z<b.  R e =  2 Q  
for z > b  ' z~Riv 

There  is an in ternal  source  of heat N as soc ia t ed  with the v iscous  fr ict ion,  which is e x p r e s s e d  in t e r m s  of 
the hydraul ic  inclination as  follows: 

N = pgQi/E. (14) 

Sys tem (1)-(14) desc r ibes  the si tuation complete ly;  e x t r e m e l y  compl ica ted  compute r  p r o g r a m s  a r e  r equ i red  to 
solve this  in genera l  fo rm,  and the run  t imes  would be ve ry  long. The initial s y s t e m  is s impl i f ied by  applying 
approx imate  methods to the pa r t s .  

We s t a r t  with the heat t r a n s f e r  for  the soil.  We introduce the function 0 = T - T ~ ,  and we make  the obvious 
assumpt ions  that  T~ r e p r e s e n t s  the na tura l  t e m p e r a t u r e  of the ground, which is l inear  and becomes  equal to T s 
for y = 0, which gives us the following boundary  and initial  conditions for 0: 

61~o = O; (15) 

el,=a = Tw-- r .  = Tb; (16) 

Ot~=o = O, (17) 

where  T w is the wall  t e m p e r a t u r e  of the tube and T n is the na tura l  t e m p e r a t u r e  of the ground at the depth of the 
pipeline. An approx imate  solution subject  to the conditions of (15)-(17) is obtained by supplementing this  reg ion  
with a region y < 0; we place an infinite s y s t e m  of f ict i t ious sources  on the y axis ,  which r e p r e s e n t  a c i r c l e  of 
rad ius  a on which the following conditions a re  met :  

0]r~=a=Ah= { T b k:>0, 
--T b k < 0 .  

The sources  k > 0 l ie on the posi t ive  par t  of  the 0y axis ,  while those with k < 0 lie on the negat ive par t .  The 
actual  pipeline co r r e sponds  to k = 0. The other  sources  l ie  at  the following dis tances  f r o m  the axis :  

/2k (H--  a); k > 0; 
~= |2H--2(k + l)(H--a); k < 0 .  

We de te rmine  the t e m p e r a t u r e  d is t r ibat ion in the band 0 ~y<_H as a sum of axial ly  s y m m e t r i c a l  fields 
set  up by this  source  sys t em.  The boundary condition of (15) is met ,  while (16) is me t  only at the point on the 
tube c lo ses t  to the su r face  of the ground. The t e m p e r a t u r e  distr ibution in the region y > H is de te rmined  with- 
out co r r ec t ion  for the su r face  of the ground. We use  the in tegral  method of [12] to de te rmine  the axial ly s y m -  
me t r i c a l  fields and get an exp re s s ion  for the total  heat  flux at the wall  of the pipe: 

Here  

2~ 

OT q=-- ~ ~a-'~-r lr= dr 
0 

~(R--1) 1--2q~--q~ "+(I+qDE -4- '  d~ + 

(18) 

(18a) 

' I+ qk 

ba = 2V2+qa3 +qh ,. M = ent 2(H/a-- 1) ' 
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F (r k) and E(~v, k) a re  elliptic integrals  of the f i rs t  and second kinds, respec t ive ly ;  int&) is  the in teger  pa r t  
of x; and R is the dimensionless  thermal - inf luence  function, which is the solution of 

dR In R + 1/R - -  1 

dt RlnR(1 + l / R +  1 / R g / 6 - - R / 4  + 1/(4R) 

Rlt=0 = 1; 

where  t is dimensionless  t ime (Fourier  number).  The function R(t) is universal  in the sense  that it does not 
contain any pa r a me te r s  for a detailed ease;  Fig. 1 shows the graph. The e r r o r  of the approximate solution of 
(18) was es t imated by utilizing a numer ica l  solution (Fig. 2). The Ktrpichev c r i t e r ion  was applied. The ca l -  
culations were  pe r fo rmed  for the following values of the p a r am e te r s :  a = 0.5 m; H = 1 m; H =2.5 m; ~= 0.002 
m2/h. 

These  calculat ions show that the method gives good accuracy;  the deviations f r o m  the numer ica l  solution 
did not exceed 6%. If the re la t ive  depth is compara t ive ly  large  (H/a > 2.5), (18) gives good re su l t s  if one puts 

G = m a x  { 1 . R - - 1  } (18b) 

This s implif icat ion does not introduce additional e r r o r s  into (18) within the s tar tup  period (about 500 h); 
the physical  meaning of (18b) is that the heat flux is de termined  by the axially symmet r i ca l  case  up to the point 
where the steady state  is reached.  If it is n e c e s s a r y  to allow for phase t ransi t ions in the soil ,  (18b) can be 
modified by inser t ing an express ion  for the heat flux obtained for the axially symmet r i ca l  two-phase case  [13]. 

We integrate  the heat-f lux equation of (1) with (18) to get 

T z = r  n + . : , _ , +  7 " - - T  n -  
u t q )  

where 

B 2 = pcQ/2n~; B 3 = N/2n~.;and~l = t zx 
tg~a 2 

The heat t r ans fe r  is ve ry  much accentuated when the flow enters  the zone where the re  is an ice layer .  
Rough calculations show that one can assume that the t em p e ra tu r e  of the flow in this zone differs li t t le f rom 
Tp. Then we can put the left  side of (2) as ze ro ,  which gives 

2:n&z (T 1 - -  rp) = N. (20) 

Stefan's condition (7) takes the following fo rm when we use the la t ter  express ion  and (13): 

08 oQ~ OT i (21) 
lPi 0-T-= 8~38SE(1,81gRe - 1,5) z + ~'i - ~ r  r=6" 

Fur the r  s implif icat ion of (21) is provided by making the usual assumptions that the specif ic  heat of the ice layer  
can be neglected and that the t empera tu re  distribution within the ice layer  cor responds  to the s t eady-s ta te  dis-  
t r ibution for the same boundary conditions [14]. Then we have 

05 pQ3 Tn - -  T2---- (22) 
IPi ~ -- 8~ 3 5~E( 1,81g Re - -  1.5) z -I-- 8 In a 8 

We see f rom (22) that the r a t e  of accumulation of the ice layer  is de termined by the function G, which i t-  
se l f  is uniquely determined by the t ime  f rom the s t a r t  of the the rmal  perturbat ion.  Since the la t ter  is constant 
for  each t r a n s v e r s e  liquid layer  in the tube (for a constant flow ra te) ,  the thickness of the ice layer  af ter  pas-  
sage of the liquid layer  does not va ry  along the length of the tube. We then introduce the function ~ (~), which 
r e p r e s e n t s  the internal  radius  of the ice l ayer  remaining af ter  passage of the liquid layer  that passes  through 
the initial c r o s s  section at t ime  ~. 

Then (22) takes the following fo rm for this function: 

dE pQ3 
/9i ~-- = 8~S~E (1.81gRe-- 1.5) 2 

(rn - -  7 ) ~ / _ _ _  (23) 

( ~ l n a §  ~ ) " 
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Here ~=~a2/Z and the initial condition is 

[1~=0 = a. (24) 

tion: 
The equation of motion for the leading edge of the ice layer is formulated from the heat-balance condi- 

db cp (T l - -  Tp) a2w 
--  2 (V - -  Ta) (25) 

l+A_ 
a 

Here we have incorporated the fact that the heat re leased on reducing the temperature of the liquid layer at t h e  
leading edge from T l to Tp is consumedinthawing the leading edge of the ice layer and in heating the soil; then 
from (19) we have 

B3 ( 
T l = T n - 4 - - ~ - 4 -  T - - r n - - - -  

83 o, ,/exp ( Bz ) . (26) 

We integrate (25) using (26) and the initial condition 

bl~=0 =- 0. (27) 

Then one can integrate (23) and (25) by a numerical method to determine ~ (~) and b(~ ), and these func- 
tions readily yield the pressure  loss in the pipeline and the shape of the ice layer as a function of time. The 
expression for the former is 

Q s ~  . (28) 
hP = i (a) b + 4~3g~ 7 (1.81g Re ~ 1.5) 2 ' 

A 

where 
A=max ; 0 . 

W 

As an example we consider the startup state for a pipeline having L=lS0  km, diameter 0.418 m, and 
burial depth H = 1.5 m, The pipeline car r ies  water with a flow ra te  of 741 ma/h, the temperature  at the inlet 
T being +4~ The dynamic viscosity of water p is 6.47 kgf/m" h. The thermophysical character is t ics  of the 
soil are ), =1.465 k c a l / m . h ,  g, u=0 .277 .10  -2 m2/h, Tn =- 2.6~ and T s =-6~ Figures 3-5 show graphs for 

(z, .~), b(~-), and Ap(1-). The resul ts  indicate that the startup is accompanied by temporary  formation of an 
ice layer on the inner surface. This increases the pressure  drop along the pipeline considerably. The maxi- 
mum pressure  difference exceeds the corresponding quantity in the absence of ice by 115%. The ice layer sub- 
sequently vanishes and the surrounding ground becomes heated, whereupon the pressure  drop falls to the 
nominal value. 

Clearly, the maximum pressure  difference along the pipeline, and therefore the maximum pressure  at 
the inlet, will ar ise shortly after startup, namely, when the soil is at its lowest temperature.  An appropriate 
burial depth and appropriate insulation must be used to ensure that the pressure  does not exceed the acceptable 
value. 

N O T A T I O N  

Tl, liquid temperature,  ~ Ti, ice temperature ,  ~ T, ground temperature,  ~ Ts, surface temperature ,  
~ T~, natural ground temperature ,  ~ ~', time h; x, y, z, r ,  spatial coordinates; a ,  radius of pipeline, m; H, 

3 depth of axis, m; Q, flow rate ,  m / h ;  w, mean speed, m/h; q, heat flux per meter ,  k c a l / m ' h ;  6, internal radius 
of ice layer,  m; Tp, phase-transition temperature ,  ~ N, output of internal heat sources,  kcal /m" h; ~q, ther -  
mal diffusivity of ice, m~/h; ~, thermal  diffusivity of ground, mZ/h; ~-i, thermal  conductivity of ice, keal/deg- 
m" h; )~, thermal  conductivity of ground, kcal /m" h. g; a ,  l iquid-wall  heat- t ransfer  coefficient, kca l /m 2- h" g; 
Re, Reynolds number; i, hydraulic inclination; g, gravitational acceleration, m/h2; E, mechanical equivalent of 
heat, J/kcal.  
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E L E C T R I C A L  S I M U L A T I O N  O F  T H R E E - D I M E N S I O N A L  

T E M P E R A T U R E  F I E L D S  OF  A N I S O T R O P I C  B O D I E S  

O F  C O M P L E X  S H A P E  

O. I .  B u k o v s k a y a ,  N. F .  D e k h t y a r e v a ,  
a n d  L .  A.  K o z d o b a  
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A procedure  is descr ibed  and re su l t s  a re  presented  of mathematical  modeling of t h r ee -  
dimensional  t empe ra tu r e  fields on hybrid e lec t r i ca l  combination s imula tors  with inte- 
gra ted microc i rcu i t s .  

The demands for more  accura te  the rmal  calculations inc rease  eve ry  year .  An increase  in the re l iab i l i ty  
and an improvement  of the quality of the e lements  a re  inseparably linked with optimization with r e spec t  to the 
the rmal  s ta te  in t rans ient  and s teady-s ta te  r eg imes .  These  r equ i remen t s  force one to seek new methods and 
to solve two- and th ree-d imens iona l  heat-conduction problems for bodies of complex shape with var iab le  t ime-  
and tempera ture-dependent  coeff icients  in both the basic equation and the boundary conditions of the mathemat i -  
cal model. For  the most  complex problems the only methods for  investigating t empera tu re  distributions in 
th ree-d imens iona l  s t ruc tu res  involve numer ica l  solutions on analog computers  with a p rocesso r  in the fo rm of 
a network or a combination e lec t r i ca l  model [1, 2]. These  models a re  a subroutine of special ized hybrid com-  
puters  permit t ing complete automation of the solution of field theory  problems descr ibed by second-o rde r  par -  
tial differential  equations [3]. 

In micromin ia tu re  e lements  of e lec t ronic  equipment s imi la r  to those shown ~n Fig. 1, th ree-d imens iona l  
t em pe r a tu r e  fields can be obtained only by mathematical  modeling. The introduction of any t em p e ra tu r e -  
measur ing  device leads to an inadmissible dis tor t ion of the t empera tu re  field, par t icu la r ly  inside the mic ro -  
element .  The thermal  c i rcui t  of a hybrid integrated mic roc i rcu i t  is a typical  example of a th ree-d imens iona l  
heat-conduction problem for an anisotropic  body of complex shape. The schematic  d iagram does not show the 
leads.  A special  study with th ree -d imens iona l  e lec t r ica l  models [4] showed that under cer ta in  conditions the 
effect  of the leads on t empera tu re  fields can be neglected. 
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